Contextual Embedding for Distributed Representations of Entities in a Text Corpus

نویسندگان

  • Md. Abdul Kader
  • Arnold P. Boedihardjo
  • Sheikh Motahar Naim
  • M. Shahriar Hossain
چکیده

Distributed representations of textual elements in low dimensional vector space to capture context has gained great attention recently. Current state-of-the-art word embedding techniques compute distributed representations using co-occurrences of words within a contextual window discounting the flexibility to incorporate other contextual phenomena like temporal, geographical, and topical contexts. In this paper, we present a flexible framework that has the ability to leverage temporal, geographical, and topical information of documents along with the textual content to produce more e↵ective vector representations of entities or words within a document collection. The framework first captures contextual relationships between entities collected from di↵erent relevant documents and then leverages these relationships to produce inputs of a graph, or to train a neural network to produce vectors for the entities. Through a set of rigorous experiments we test the performance of our approach and results show that our proposed solution can produce more meaningful vectors than the state-of-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

پیکره اعلام: یک پیکره استاندارد واحدهای اسمی برای زبان فارسی

Named entity recognition (NER) is a natural language processing (NLP) problem that is mainly used for text summarization, data mining, data retrieval, question and answering, machine translation, and document classification systems. A NER system is tasked with determining the border of each named entity, recognizing its type and classifying it into predefined categories. The categories of named...

متن کامل

Corefrence resolution with deep learning in the Persian Labnguage

Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...

متن کامل

PAYMA: A Tagged Corpus of Persian Named Entities

The goal in the named entity recognition task is to classify proper nouns of a piece of text into classes such as person, location, and organization. Named entity recognition is an important preprocessing step in many natural language processing tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016